Cardiovascular protective effects of valsartan in high-risk hypertensive patients with chronic kidney disease: updated analysis of KYOTO HEART Study

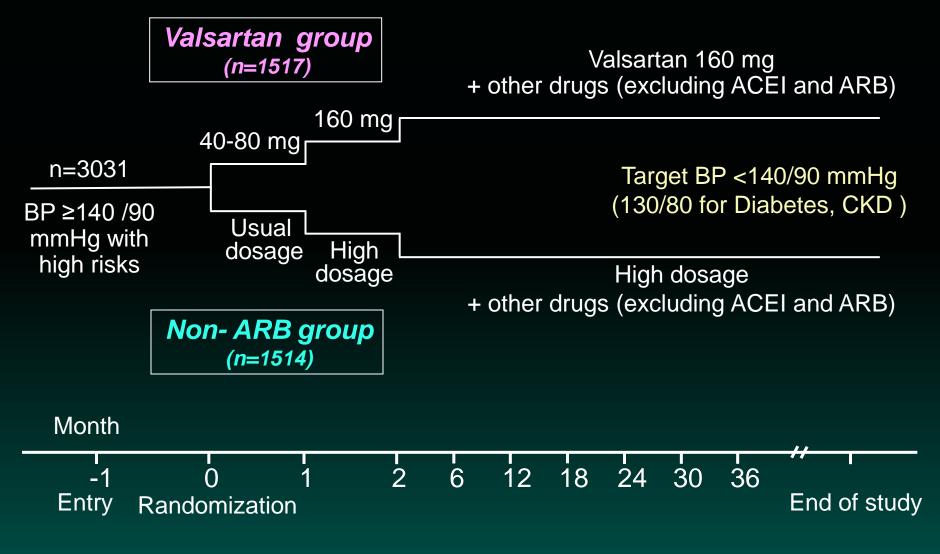
Sawada T, Koide M, Shiraishi J, Yamada H, Matsubara H Kyoto Prefectural University of Medicine, Kyoto, Japan

Conflict of Interest

- The study was funded by Kyoto Prefectural University School of Medicine.
- The sponsor had no role in study design, data collection, data analysis, data interpretation, or writing of the report.

Effects of valsartan on morbidity and mortality in uncontrolled hypertensive patients with high cardiovascular risks: KYOTO HEART Study

Takahisa Sawada¹*, Hiroyuki Yamada¹, Björn Dahlöf², and Hiroaki Matsubara¹ for the KYOTO HEART Study Group


¹Department of Cardiovascular Medicine, Kyoto Prefectural University School of Medicine, Kajiicho 465, Kamigyoku, Kyoto 602-8566, Japan; and ²Department of Medicine, Sahlgrenska University Hospital/ Östra, Göteborg, Sweden

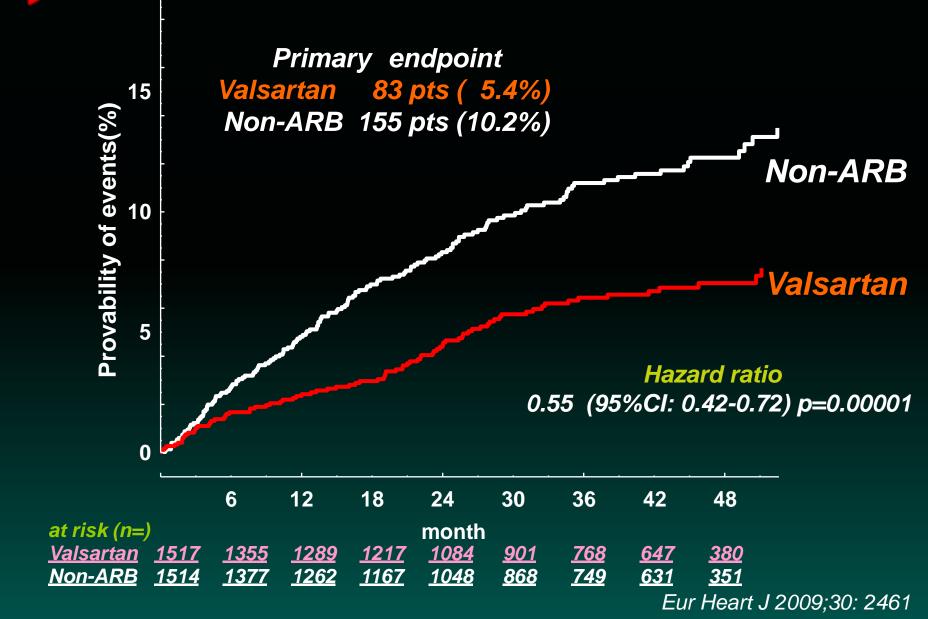
Received 4 August 2009; accepted 13 August 2009; online publish-ahead-of-print 31 August 2009.

See page 2427 for the commentary on this article (doi:10.1093/eurheartj/ehp364)

Aims	The objective was to assess the add-on effect of valsartan on top of the conventional treatment for high-risk hyper- tension in terms of the morbidity and mortality.
Methods and results	The KYOTO HEART Study was of a multicentre, Prospective Randomised Open Blinded Endpoint (PROBE) design, and the primary endpoint was a composite of fatal and non-fatal cardiovascular events (clintrials.gov NCT00149227). A total of 3031 Japanese patients (43% female, mean 66 years) with uncontrolled hypertension were randomized to either valsartan add-on or non-ARB treatment. Median follow-up period was 3.27 years. In both groups, blood pressure at baseline was 157/88 and 133/76 mmHg at the end of study. Compared with non-ARB arm, valsartan add-on arm had fewer primary endpoints (83 vs. 155; HR 0.55, 95% CI 0.42–0.72, <i>P</i> = 0.00001).
Conclusion	Valsartan add-on treatment to improve blood pressure control prevented more cardiovascular events than conven- tional non-ARB treatment in high-risk hypertensive patients in Japan. These benefits cannot be entirely explained by a difference in blood pressure control.
Keywords	High-risk hypertension • Angiotensin receptor blockers • Cardiovascular mortality-morbidity • Valsartan

KYOTO HEART Scheme of study protocol

Multi-center, PROBE design, two-arm parallel treatment group comparison study with a response-dependent dose titration scheme


Eur Heart J 2009;30: 2461

Kaplan-Meier's curves

куото

studv

20

KYOTO Hazard ratio and 95% confidence intervals

study		Ha	zard	Ratio	Detter	4 - ()		
	0.25	0.5	1.0	2.0	Patien		– HR	P-value
					Valsartan	Non- ARB		
Primary endpoint		\rightarrow	_		83	155	0.55	0.00001
Acute Myocardial Infarction			-		7	11	0.65	0.39466
Angina Pectoris					22	44	0.51	0.01058
Heart Failure	_				12	26	0.65	0.20857
Stroke	-				25	46	0.55	0.01488
Dissecting Aneurysm of Aorta —					- 3	5	0.60	0.69987
Lower limb arterial obstruction					- 11	12	0.99	0.98106
Transition to dialysis or doubling of serum creatinine level		-		-	6	14	0.43	0.34666
All cause mortality			-		22	32	0.76	0.32851
Cardiovascular death			-		8	13	0.66	0.37121
New onset Diabetes		_			58	86	0.67	0.02817
					Eur H	leart J	2009	;30: 2461

 Chronic renal dysfunction is an independent risk factor for cardiovascular disease (CVD).

(Circulation 2003;108:2154, J Am Soc Nephrol 2003;14:3233.)

 Chronic kidney disease (CKD) is associated with increased CVD-related and all-cause mortality rates.

(Am J Kidney Dis 2003;42:677.)

 Dysfunction of the heart can develop the kidney dysfunction in various clinical settings.

(Am Heart J 2005;149:209, J Card Fail 2007;13:422-430.)

 Bidirectional interaction between CKD and CVD is defined as cardiorenal syndrome.

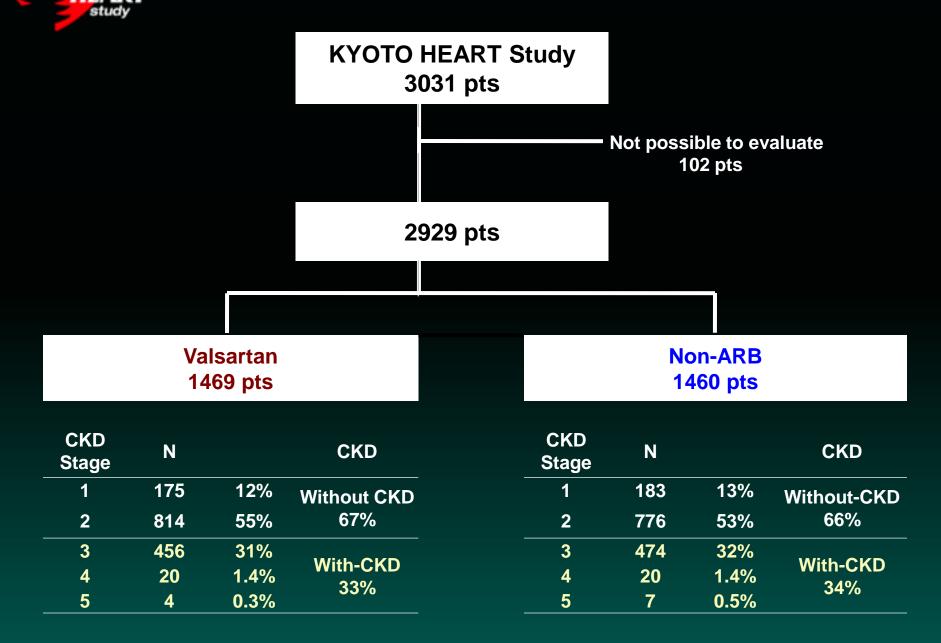
Study purpose

As the ancillary analysis of the KYOTO HEART study, we investigated the cardiovascular protective effects of valsartan in high-risk hypertensive patients with chronic kidney disease.

Method

• Estimated glomerular filtration rate (eGFR) at study entry

- eGFR (mL/min/1.73 m²) = 194 x Serum Cr^(-1.094) x Age^(-0.287) x 0.739 (if female) (Revised equations for eGFR from sCr in Japan. Am J Kidney Dis 2009; 53:982.)


Comparison between With-CKD and Without-CKD groups

- CKD was defined by eGFR of less than 60 (mL/min per 1.73 m²)
- The primary endpoint was the same as in the main study: Composite of defined cardio- or cerebro-vascular events such as stroke/TIA, MI, worsening heart failure, angina pectoris, dissecting aortic aneurysm, lower limb arterial obstruction, transition to dialysis or doubling of serum creatinine levels.

Relationship between CKD severity and CV events

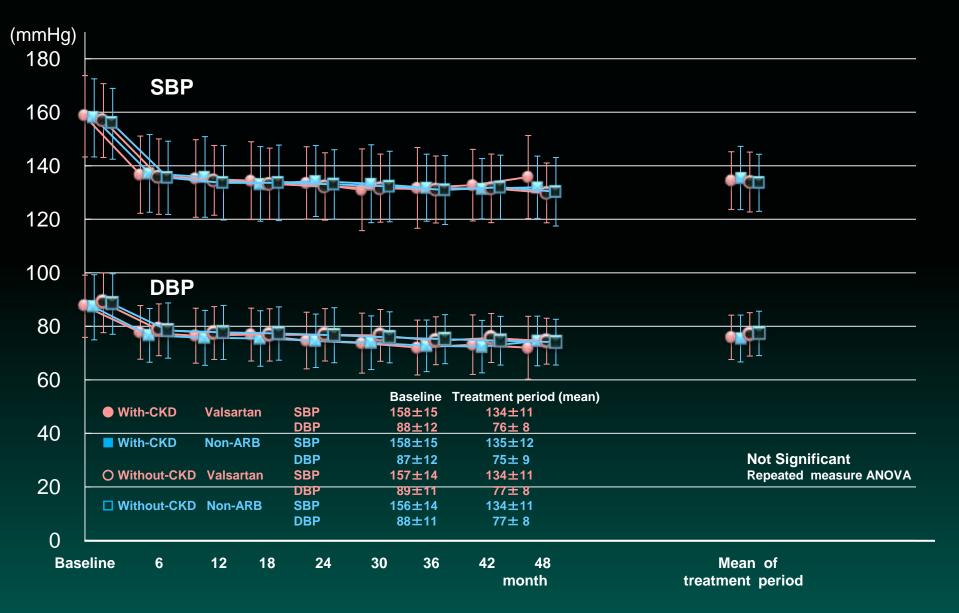
- The study population were staged into five categories
- CKD-1 (eGFR>=90 mL/min/1.73m²), CKD-2 (60-89), CKD-3 (30-59), CKD-4 (15-29) and CKD-5 (<15) according to the K/DOQI clinical practice guidelines for CKD. (Am J Kidney Dis 2002; 39(2 Suppl 1):S1.)

KYOTO HEART Flow chart of the study population

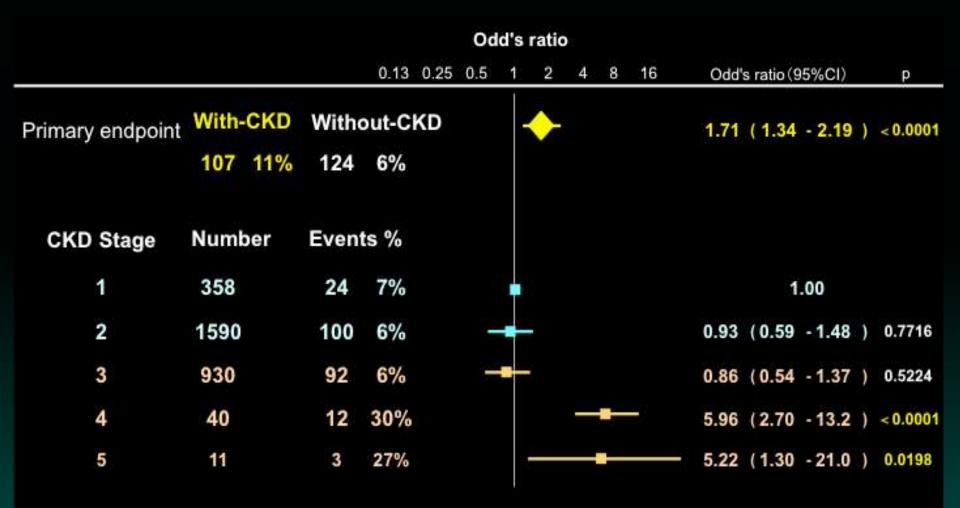
Baseline characteristics

		With-CKD		Without-CKD						
	Valsartan	Non-ARB	ALL	Valsartan	Non-ARB	ALL 1948				
	480	501	981	989	959					
Age (years)*	70 ± 10	70 ± 10	70 ± 10	63.9 ± 11.1	63.8 ± 11	63.8 ± 11				
Gender (men/women)	273 / 207	276 / 225	549 / 432	563 / 426	561 / 398	1124 / 824				
Blood pressure (mmHg)										
Systole	158 ± 15	158 ± 15	158 ± 15	157 ± 14	156 ± 13	156 ± 14				
Diastole	88 ± 12	87 ± 12	87 ± 12	89 ± 11	88 ± 11	89 ± 11				
Heart rate (beats/min)	71 ± 19	72 ± 15	71 ± 17	70 ± 17	70 ± 17	70 ± 17				
Body-mass index (kg/m ²)	25 ± 3.5	24 ± 3.9	24 ± 3.7	24.5 ± 3.7	24.7 ± 3.8	24.6 ± 3.8				
LDL-cholesterol (mg/dL)	123 ± 32	123 ± 31	123 ± 31	122 ± 53	123 ± 31	122 ± 43				
HDL-cholesterol (mg/dL)	54 ± 15	54 ± 16	54 ± 16	56 ± 15	55 ± 15	55 ± 15				
Triglyceride (mg/dL)	151 ± 82	152 ± 86	152 ± 84	149 ± 102	154 ± 97	151 ± 99				
HbA1c(%)	6.3 ± 3.7	6.1 ± 1.3	6.2 ± 2.7	6.0 ± 1.4	6.0 ± 1.2	6.0 ± 1.3				
Fasting plasma glucose (mg/dL)	124 ± 49	122 ± 44	123 ± 47	121 ± 45	122 ± 46	121 ± 46				
Serum creatinine (mg/dL)	0.8 ± 0.2	0.9 ± 0.3	0.9 ± 0.3	0.8 ± 0.2	0.8 ± 0.2	0.8 ± 0.2				
eGFR (mL/min/1.73m ²)**	48 ± 9	48 ± 10	48 ± 9	78 ± 15	79 ± 16	78 ± 16				
Sodium (mEg/L)	144 ± 16	142 ± 14	143 ± 14	141 ± 6	146 ± 11	144 ± 8				
Potassium (mEq/L)	4.3 ± 0.4	4.3 ± 1.0	4.3 ± 0.8	4.6 ± 1.0	4.3 ± 2.5	4.5 ± 0.8				
Risk factor										
Obesity	189 (39%)	179 (36%)	368 (38%)	382 (39%)	384 (40%)	766 (39%)				
Dyslipidemia	349 (73%)	378 (75%)	727 (74%)	687 (69%)	669 (70%)	1356 (70%)				
Diabetes	124 (26%)	148 (30%)	272 (28%)	260 (26%)	241 (25%)	501 (26%)				
Current smoker	87 (18%)	87 (17%)	174 (18%)	244 (25%)	232 (24%)	476 (24%)				
Ischemic heart disease**	143 (30%)	152 (30%)	295 (30%)	200 (20%)	182 (19%)	382 (20%)				
Cerebrovascular disease	19 (4%)	26 (5%)	45 (5%)	39 (4%)	37 (4%)	76 (4%)				
LVH on ECG	129 (27%)	141 (28%)	270 (28%)	266 (27%)	259 (27%)	525 (27%)				
Congestive heart failure**	35 (7%)	67 (13%)	102 (10%)	45 (5%)	36 (4%)	81 (4%)				

Data are mean ± SD or number(%), p*<0.05 and p**<0.01 compared between With-CKD vs Without-CKD.

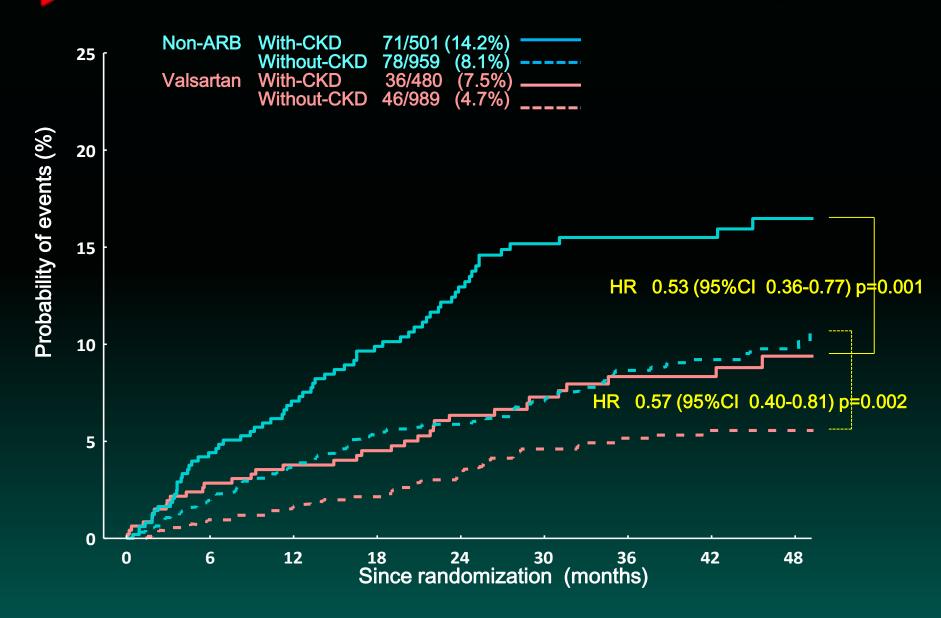


Baseline medications at the entry


		With-CKD		Without-CKD						
	Valsartan 480	Non-ARB 501	ALL 981	Valsartan 989	Non-ARB 959	ALL 1948				
Calcium-channel blocker	265 (55%)	297 (59%)	562 (57%)	542 (55%)	503 (52%)	1045 (54%)				
ACE inhibitor**	100 (21%)	123 (25%)	223 (23%)	177 (18%)	171 (18%)	348 (18%)				
β-blocker**	99 (21%)	106 (21%)	205 (21%)	157 (16%)	161 (17%)	318 (16%)				
a-blocker	19 (4%)	19 (4%)	38 (4%)	25 (3%)	28 (3%)	53 (3%)				
Thiazide	14 (3%)	19 (4%)	33 (3%)	38 (4%)	25 (3%)	63 (3%)				
Other diuretics	38 (8%)	53 (11%)	91 (9%)	33 (3%)	28 (3%)	61 (3%)				
Anti-aldosterone agent	15 (3%)	15 (3%)	30 (3%)	15 (2%)	10 (1%)	25 (1%)				
Antiarrhythmic drugs	15 (3%)	29 (6%)	44 (4%)	31 (3%)	26 (3%)	57 (3%)				
Nicorandil	31 (6%)	20 (4%)	51 (5%)	33 (3%)	31 (3%)	64 (3%)				
Anti-coagulating agent	35 (7%)	45 (9%)	80 (8%)	51 (5%)	57 (6%)	108 (6%)				
Anti-platelet agent**	149 (31%)	161 (32%)	310 (32%)	238 (24%)	245 (26%)	483 (25%)				
Nitroglycerine or ISDN	53 (11%)	58 (12%)	111 (11%)	76 (8%)	65 (7%)	141 (7%)				
Digoxin	11 (2%)	20 (4%)	31 (3%)	20 (2%)	21 (2%)	41 (2%)				
Statin	150 (31%)	182 (36%)	332 (34%)	324 (33%)	303 (32%)	627 (32%)				
Fibrarte	14 (3%)	14 (3%)	28 (3%)	21 (2%)	16 (2%)	37 (2%)				
Other lipid modulating drugs	18 (4%)	12 (2%)	30 (3%)	25 (3%)	17 (2%)	42 (2%)				
Oral hypoglycemic agent(SU)	44 (9%)	55 (11%)	99 (10%)	122 (12%)	113 (12%)	235 (12%)				
Other hypoglycemic agent Insulin	46(10%) 13(3%)	50(10%) 24(5%)	96(10%) 37(4%)	92(9%) 25(3%)	89(9%) 15(2%)	181(9%) 40(2%)				

Data are number (%), p**<0.01 compared between With-CKD vs Without-CKD.

EXACTO HEART Study BP changes during the study period



EXACTO HEART Odd's ratio & 95% Cls for primary endpoint

Upper part indicates the comparison between With-CKD and Without-CKD, and lower part indicates Odd's ratios of each CKD stages compared to CKD-1.

KYOTO HEART Kaplan-Meier curves in With/Without-CKD between valsartan and Non-ARB groups

Hazard ratio and 95% CIs for effects of valsartan on primary endpoints and components

Endpoint	CKD	Vals	artan	Nor	-ARB	0.13	0.25	0.5	1.0	2.0	4.0	Hazard	ratio (99	5%C	1)	р
Primary endpoint	+	36	8%	71	14%			-	-			0.53 (0	.36 - 0).77)	0.001
r nnary enapoint		46	5%	78	8%			-				0.57 (0	.40 - ().81)	0.002
Stroke	÷	13	3%	16	3%			_	-	-		0.85 (0	.41 - 1	.74)	0.654
oliono		12	1.2%	28	3%		1					0.42 (0	.21 - ().81)	0.010
Angina pectoris	+	8	1.7%	15	3%			-	-+-			0.56 (0	.24 - 1	.30)	0.176
Angina pectoris	<u>.</u>	13	1.3%	28	3%				-			0.45 (0	.23 - 0	86)	0.016
Acute MI	+	5	1.0%	8	1.6%		_	-		_		0.65 (0	.21 - 1	.98)	0.451
		2	0.2%	2	0.2%							0.97 (0	.14 - 6	5.87)	0.975
	+	2	0.4%	15	3.0%	*						0.14 (0	.03 - 0	0.61)	0.009
Heart failure	¥۵.	10	1.0%	10	1.0%							0.97 (0	.41 - 2	2.32)	0.945
Lower limb arterial	+	5	1.0%	6	1.2%		-			-		0.87 (0	.27 - 2	2.83)	0.817
obstruction	2	6	0.6%	6	0.6%		53					0.97 (0	.31 - 3	3.00)	0.957
Transition to dialysis or	+	3	0.6%	12	2.4%				-			0.26 (0	.07 - 0).92)	0.036
doubling of SCr levels	-	3	0.3%	2	0.2%				==			-1.45 (0	.24 - 8	3.69)	0.681
Dissecting aneurysm of	+	2	0.4%	2	0.4%	-						1.04 (0	.15 - 7	.38)	0.966
aorta	÷۵	1	0.1%	2	0.2%							0.48 (0	.04 - 5	5.34)	0.554
All cause mortality	+	14	3%	24	5%			_				0.61 (0	.32 - 1	.16)	0.133
	2	8	0.8%	8	0.8%							0.97 (0	.37 - 2	2.57)	0.951
	+	5	1.0%	13	3%							0.38 (0	.14 - 1	.06)	0.066
Cardiovascular death		3	0.3%	3	0.3%						_	0.97 (0)	0.97

куото

- Hypertensive patients with CKD had significantly higher CV events than patients without CKD.
- Severity of CKD stage is closely related to the CV event incidence in patients with high-risk hypertension.
- Valsartan add-on treatment is more efficient than non-ARB treatment in high-risk hypertensive patients irrespective of CKD, although there was no significant difference in BP reduction levels among these regimens.
- Valsartan add-on regimen provides beneficial effects, especially in the prevention of heart failure and renovascular events in With-CKD and stroke and angina pectoris in Without-CKD.

Limitations

- The study is a *post-hoc* analysis. The differences of patient characteristics in the groups cannot be completely excluded, and lower sample volume in each sub-groups might undersize the statistical power.
- Patient numbers in CKD stages are not equally distributed in the study. *Most of CKD-5 were excluded* because valsartan is a contra-indication in patients with Cr > 3.0mg/dL.
- 102 patients who could not provide Cr data at the entry were excluded from the ancillary analysis.
- Since the main study was performed in the *PROBE design*, we could not exclude possible bias in event reporting, particularly for softer endpoints such as angina and TIA.

Conclusion

- The ancillary analysis from the KYOTO HEART Study showed that CKD was significantly associated with CV events in high-risk hypertension, and the event rate stepped up according to CKD stages.
- Valsartan add-on regimen for high-risk hypertension is more efficient for CV event prevention not only for the patients with CKD but also without CKD.